Lesson 28. Triple Integrals in Cylindrical Coordinates

1 Cylindrical coordinates

- Idea: polar coordinates with a z-axis

- Converting between cylindrical and rectangular coordinates:

Example 1.

a. Describe the surface whose equation in cylindrical coordinates is $r=2$.
b. Describe the surface whose equation in cylindrical coordinates is $z=r$.

2 Evaluating triple integrals in cylindrical coordinates

Example 2. Set up an iterated integral for $\iiint_{E} \sqrt{x^{2}+y^{2}} d V$, where E is the region that lies inside the cylinder $x^{2}+y^{2}=16$ and between the planes $z=2$ and $z=5$. Use cylindrical coordinates.

Example 3. Convert $\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} \int_{0}^{4-x^{2}-y^{2}}(x+z) d z d y d x$ to a triple integral in cylindrical coordinates.

Example 4. Set up an iterated integral to find the volume of the solid that is enclosed by the cone $z=\sqrt{x^{2}+y^{2}}$ and the sphere $x^{2}+y^{2}+z^{2}=2$. Use cylindrical coordinates.

3 If we have time...

Example 5. Set up an iterated integral to find the volume of the solid above the paraboloid $z=x^{2}+y^{2}$ and below the half-cone $z=\sqrt{x^{2}+y^{2}}$. Use cylindrical coordinates.

