Lesson 28. Triple Integrals in Cylindrical Coordinates

1 Cylindrical coordinates

• Idea: polar coordinates with a *z*-axis

• Converting between cylindrical and rectangular coordinates:

Example 1.

- a. Describe the surface whose equation in cylindrical coordinates is r = 2.
- b. Describe the surface whose equation in cylindrical coordinates is z = r.

2 Evaluating triple integrals in cylindrical coordinates

Example 2. Set up an iterated integral for $\iiint_E \sqrt{x^2 + y^2} \, dV$, where *E* is the region that lies inside the cylinder $x^2 + y^2 = 16$ and between the planes z = 2 and z = 5. Use cylindrical coordinates.

Example 3. Convert $\int_0^2 \int_0^{\sqrt{4-x^2}} \int_0^{4-x^2-y^2} (x+z) dz dy dx$ to a triple integral in cylindrical coordinates.

Example 4. Set up an iterated integral to find the volume of the solid that is enclosed by the cone $z = \sqrt{x^2 + y^2}$ and the sphere $x^2 + y^2 + z^2 = 2$. Use cylindrical coordinates.

3 If we have time...

Example 5. Set up an iterated integral to find the volume of the solid above the paraboloid $z = x^2 + y^2$ and below the half-cone $z = \sqrt{x^2 + y^2}$. Use cylindrical coordinates.